If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x=-12
We move all terms to the left:
x^2+14x-(-12)=0
We add all the numbers together, and all the variables
x^2+14x+12=0
a = 1; b = 14; c = +12;
Δ = b2-4ac
Δ = 142-4·1·12
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{37}}{2*1}=\frac{-14-2\sqrt{37}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{37}}{2*1}=\frac{-14+2\sqrt{37}}{2} $
| 6*6^5x=36*6^x-7 | | 2x+1+4=x+16+x | | -3(x+9)=6x+27 | | 3r2-26r=16 | | 1+2x3=7 | | x^2−14x+45=0 | | 51=-3x7 | | 78=n-(-43) | | (x+1)(×-1)=x²-x+45 | | 5.4y=0.4 | | 6x+15=2x+67 | | 8k-5(-5+3)=66 | | 16=t=4000 | | -23-x=-41 | | 1÷3t+6=8÷3 | | 1/4(8x+4)=1 | | -3(2a-8)=0 | | 125-z=180 | | 2x+18=x+32 | | 3x+20+2x-8=92 | | (1/2)(8-6x)=x | | 36=3n•4 | | 2a(a-7)=16 | | 3x-30=2x+44 | | x+62=4x-35x+62=4x-35 | | 3+2x=91.50 | | -3x-12=6x-15 | | 2a(a-7=16 | | 2(x+4)+3x=2x | | 17=c+41 | | 2x+-14=25 | | 5x-81=2x |